Artículo
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model
Fecha de publicación:
07/2012
Editorial:
Elsevier Science Inc.
Revista:
Information Sciences
ISSN:
0020-0255
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases.
Palabras clave:
ARTIFICIAL NEURAL NETWORK
,
KNOWLEDGE-SOURCE DISCOVERY
,
SEMANTIC WEB
,
WORDNET
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Rubiolo, Mariano; Caliusco, Maria Laura; Stegmayer, Georgina; Coronel, M.; Gareli Fabrizi, M.; Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model; Elsevier Science Inc.; Information Sciences; 194; 7-2012; 107-119
Compartir
Altmétricas