Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez, Paula
dc.contributor.author
Di Rienzo, Julio Alejandro
dc.contributor.author
Moschen, Sebastián
dc.contributor.author
Dosio, Guillermo Aníbal Adrián
dc.contributor.author
Aguirrezábal, Luis Adolfo Nazareno
dc.contributor.author
Hopp, Horacio Esteban
dc.contributor.author
Paniego, Norma Beatriz
dc.contributor.author
Heinz, Ruth Amelia
dc.date.available
2023-05-04T11:47:58Z
dc.date.issued
2011-01
dc.identifier.citation
Fernandez, Paula; Di Rienzo, Julio Alejandro; Moschen, Sebastián; Dosio, Guillermo Aníbal Adrián; Aguirrezábal, Luis Adolfo Nazareno; et al.; Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis; Springer; Plant Cell Reports; 30; 1; 1-2011; 63-74
dc.identifier.issn
0721-7714
dc.identifier.uri
http://hdl.handle.net/11336/196229
dc.description.abstract
The selection and validation of reference genes constitute a key point for gene expression analysis based onqPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel). The results show that geNorm suggested the use of all combined genes, although identifying a-TUB1 as the most stable expressing gene. BestKeeper revealed a-TUB and b-TUB as stable genes, scoring b-TUB as themost stable one. The statistical LMModel identified a-TUB, actin, PEP, and EF-1a as stable genes in this order.The model-based approximation allows not only the estimation of systematic changes in gene expression, but also the identification of sources of random variation through the estimation of variance components, considering the experimental design applied. Validation of a-TUB and EF-1a as reference genes for expression studies of three sunflower senescence associated genes showed that the first one was more stable for the assayed conditions. We conclude that, when biological replicates are available, LMModel allows a more reliable selection under the assayed conditions. This study represents the first analysis of identification and validation of genuine reference genes for use as internal control in qPCR expression studies in sunflower, experimentally validated throughout six different controlled leaf senescence conditions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
QPCR
dc.subject
REFERENCE GENES
dc.subject
SENESCENCE
dc.subject
SUNFLOWER
dc.subject.classification
Biotecnología Agrícola y Biotecnología Alimentaria
dc.subject.classification
Biotecnología Agropecuaria
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-03T13:26:26Z
dc.journal.volume
30
dc.journal.number
1
dc.journal.pagination
63-74
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Fernandez, Paula. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: Di Rienzo, Julio Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
dc.description.fil
Fil: Moschen, Sebastián. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Departamento de Biología. Laboratorio de Fisiología Bioquímica y Adaptativa; Argentina
dc.description.fil
Fil: Dosio, Guillermo Aníbal Adrián. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Departamento de Biología. Laboratorio de Fisiología Bioquímica y Adaptativa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Aguirrezábal, Luis Adolfo Nazareno. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Departamento de Biología. Laboratorio de Fisiología Bioquímica y Adaptativa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Hopp, Horacio Esteban. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: Paniego, Norma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: Heinz, Ruth Amelia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Plant Cell Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00299-010-0944-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00299-010-0944-3
Archivos asociados