Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis

Fernandez, Paula; Di Rienzo, Julio Alejandro; Moschen, Sebastián; Dosio, Guillermo Aníbal AdriánIcon ; Aguirrezábal, Luis Adolfo NazarenoIcon ; Hopp, Horacio Esteban; Paniego, Norma BeatrizIcon ; Heinz, Ruth AmeliaIcon
Fecha de publicación: 01/2011
Editorial: Springer
Revista: Plant Cell Reports
ISSN: 0721-7714
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biotecnología Agrícola y Biotecnología Alimentaria

Resumen

The selection and validation of reference genes constitute a key point for gene expression analysis based onqPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel). The results show that geNorm suggested the use of all combined genes, although identifying a-TUB1 as the most stable expressing gene. BestKeeper revealed a-TUB and b-TUB as stable genes, scoring b-TUB as themost stable one. The statistical LMModel identified a-TUB, actin, PEP, and EF-1a as stable genes in this order.The model-based approximation allows not only the estimation of systematic changes in gene expression, but also the identification of sources of random variation through the estimation of variance components, considering the experimental design applied. Validation of a-TUB and EF-1a as reference genes for expression studies of three sunflower senescence associated genes showed that the first one was more stable for the assayed conditions. We conclude that, when biological replicates are available, LMModel allows a more reliable selection under the assayed conditions. This study represents the first analysis of identification and validation of genuine reference genes for use as internal control in qPCR expression studies in sunflower, experimentally validated throughout six different controlled leaf senescence conditions.
Palabras clave: QPCR , REFERENCE GENES , SENESCENCE , SUNFLOWER
Ver el registro completo
 
Archivos asociados
Tamaño: 478.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/196229
URL: https://link.springer.com/article/10.1007/s00299-010-0944-3
DOI: http://dx.doi.org/10.1007/s00299-010-0944-3
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Fernandez, Paula; Di Rienzo, Julio Alejandro; Moschen, Sebastián; Dosio, Guillermo Aníbal Adrián; Aguirrezábal, Luis Adolfo Nazareno; et al.; Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis; Springer; Plant Cell Reports; 30; 1; 1-2011; 63-74
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES