Mostrar el registro sencillo del ítem
dc.contributor.author
Prado, Pavel
dc.contributor.author
Birba, Agustina
dc.contributor.author
Cruzat, Josefina
dc.contributor.author
Santamaría García, Hernando
dc.contributor.author
Parra, Mario
dc.contributor.author
Moguilner, Sebastian
dc.contributor.author
Tagliazucchi, Enzo Rodolfo
dc.contributor.author
Ibañez, Agustin Mariano
dc.date.available
2023-05-03T11:15:32Z
dc.date.issued
2022-02
dc.identifier.citation
Prado, Pavel; Birba, Agustina; Cruzat, Josefina; Santamaría García, Hernando; Parra, Mario; et al.; Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration; Elsevier Science; International Journal Of Psychophysiology; 172; 2-2022; 24-38
dc.identifier.issn
0167-8760
dc.identifier.uri
http://hdl.handle.net/11336/196052
dc.description.abstract
The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic “ConnEEGtome” in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. “Ground truths” for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONNECTIVITY
dc.subject
DEMENTIA
dc.subject
EEG
dc.subject
HARMONIZATION
dc.subject
MACHINE LEARNING
dc.subject
MULTICENTRIC STUDIES
dc.subject.classification
Neurociencias
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-02T11:48:51Z
dc.journal.volume
172
dc.journal.pagination
24-38
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Prado, Pavel. Universidad Adolfo Ibañez; Chile
dc.description.fil
Fil: Birba, Agustina. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Cruzat, Josefina. Universidad Adolfo Ibañez; Chile
dc.description.fil
Fil: Santamaría García, Hernando. Pontificia Universidad Javeriana; Colombia
dc.description.fil
Fil: Parra, Mario. University of Strathclyde; Reino Unido
dc.description.fil
Fil: Moguilner, Sebastian. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos
dc.journal.title
International Journal Of Psychophysiology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijpsycho.2021.12.008
Archivos asociados