Mostrar el registro sencillo del ítem

dc.contributor.author
Prado, Pavel  
dc.contributor.author
Birba, Agustina  
dc.contributor.author
Cruzat, Josefina  
dc.contributor.author
Santamaría García, Hernando  
dc.contributor.author
Parra, Mario  
dc.contributor.author
Moguilner, Sebastian  
dc.contributor.author
Tagliazucchi, Enzo Rodolfo  
dc.contributor.author
Ibañez, Agustin Mariano  
dc.date.available
2023-05-03T11:15:32Z  
dc.date.issued
2022-02  
dc.identifier.citation
Prado, Pavel; Birba, Agustina; Cruzat, Josefina; Santamaría García, Hernando; Parra, Mario; et al.; Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration; Elsevier Science; International Journal Of Psychophysiology; 172; 2-2022; 24-38  
dc.identifier.issn
0167-8760  
dc.identifier.uri
http://hdl.handle.net/11336/196052  
dc.description.abstract
The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic “ConnEEGtome” in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. “Ground truths” for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONNECTIVITY  
dc.subject
DEMENTIA  
dc.subject
EEG  
dc.subject
HARMONIZATION  
dc.subject
MACHINE LEARNING  
dc.subject
MULTICENTRIC STUDIES  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-02T11:48:51Z  
dc.journal.volume
172  
dc.journal.pagination
24-38  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Prado, Pavel. Universidad Adolfo Ibañez; Chile  
dc.description.fil
Fil: Birba, Agustina. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Cruzat, Josefina. Universidad Adolfo Ibañez; Chile  
dc.description.fil
Fil: Santamaría García, Hernando. Pontificia Universidad Javeriana; Colombia  
dc.description.fil
Fil: Parra, Mario. University of Strathclyde; Reino Unido  
dc.description.fil
Fil: Moguilner, Sebastian. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos  
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Universidad Adolfo Ibañez; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos  
dc.journal.title
International Journal Of Psychophysiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijpsycho.2021.12.008