Artículo
Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration
Prado, Pavel; Birba, Agustina
; Cruzat, Josefina; Santamaría García, Hernando; Parra, Mario; Moguilner, Sebastian; Tagliazucchi, Enzo Rodolfo
; Ibañez, Agustin Mariano
Fecha de publicación:
02/2022
Editorial:
Elsevier Science
Revista:
International Journal Of Psychophysiology
ISSN:
0167-8760
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic “ConnEEGtome” in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. “Ground truths” for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.
Palabras clave:
CONNECTIVITY
,
DEMENTIA
,
EEG
,
HARMONIZATION
,
MACHINE LEARNING
,
MULTICENTRIC STUDIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Prado, Pavel; Birba, Agustina; Cruzat, Josefina; Santamaría García, Hernando; Parra, Mario; et al.; Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration; Elsevier Science; International Journal Of Psychophysiology; 172; 2-2022; 24-38
Compartir
Altmétricas