Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez Rivero, Cristian Maximiliano  
dc.contributor.author
Pucheta, Julián Antonio  
dc.contributor.author
Baumgartner, Josef Sylvester  
dc.contributor.author
Patiño, Héctor Daniel  
dc.contributor.author
Sauchelli, Victor Hugo  
dc.date.available
2023-05-02T16:47:52Z  
dc.date.issued
2012-05  
dc.identifier.citation
Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián Antonio; Baumgartner, Josef Sylvester; Patiño, Héctor Daniel; Sauchelli, Victor Hugo; High roughness time series forecasting based on energy associated of series; David Publishing Company; Journal of Communication and Computer; 5; 9; 5-2012; 576-586  
dc.identifier.issn
1548-7709  
dc.identifier.uri
http://hdl.handle.net/11336/196019  
dc.description.abstract
In this study, an algorithm to adjust parameters of high roughness time series based on energy associated of series using a feed-forward NN-based model is presented. The criterion for adjustment consists of building time series values from forecasted time series area and taking into account the roughness of series. These values are approximated by the NN to make a primitive calculated as an area by the predictor filter used as a new entrance. A comparison between this work and another that involves a similar approach to test time series prediction, indicates an improvement for certain sort of series. The NN filter output is intended to approximate the current value available from the series which has the same Hurst Parameter as the real time series. The proposed approach is tested over five time series obtained from samples of Mackey-Glass delay differential equations (MG). Therefore, these results show a model performance for time series forecasting and encourage to be applied for meteorological variables measurements such as soil moisture series, daily rainfall and monthly cumulative rainfall time series forecasting.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
David Publishing Company  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TIME SERIES  
dc.subject
FORECASTING  
dc.subject
NEURAL NETWORKS  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
High roughness time series forecasting based on energy associated of series  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-26T16:42:30Z  
dc.journal.volume
5  
dc.journal.number
9  
dc.journal.pagination
576-586  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rodriguez Rivero, Cristian Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina  
dc.description.fil
Fil: Pucheta, Julián Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Baumgartner, Josef Sylvester. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Patiño, Héctor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Sauchelli, Victor Hugo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina  
dc.journal.title
Journal of Communication and Computer  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.davidpublisher.com/index.php/Home/Journal/detail?journalid=16&jx=jcc&cont=allissues