Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

High roughness time series forecasting based on energy associated of series

Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián AntonioIcon ; Baumgartner, Josef SylvesterIcon ; Patiño, Héctor Daniel; Sauchelli, Victor Hugo
Fecha de publicación: 05/2012
Editorial: David Publishing Company
Revista: Journal of Communication and Computer
ISSN: 1548-7709
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

In this study, an algorithm to adjust parameters of high roughness time series based on energy associated of series using a feed-forward NN-based model is presented. The criterion for adjustment consists of building time series values from forecasted time series area and taking into account the roughness of series. These values are approximated by the NN to make a primitive calculated as an area by the predictor filter used as a new entrance. A comparison between this work and another that involves a similar approach to test time series prediction, indicates an improvement for certain sort of series. The NN filter output is intended to approximate the current value available from the series which has the same Hurst Parameter as the real time series. The proposed approach is tested over five time series obtained from samples of Mackey-Glass delay differential equations (MG). Therefore, these results show a model performance for time series forecasting and encourage to be applied for meteorological variables measurements such as soil moisture series, daily rainfall and monthly cumulative rainfall time series forecasting.
Palabras clave: TIME SERIES , FORECASTING , NEURAL NETWORKS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 267.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/196019
URL: https://www.davidpublisher.com/index.php/Home/Journal/detail?journalid=16&jx=jcc
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián Antonio; Baumgartner, Josef Sylvester; Patiño, Héctor Daniel; Sauchelli, Victor Hugo; High roughness time series forecasting based on energy associated of series; David Publishing Company; Journal of Communication and Computer; 5; 9; 5-2012; 576-586
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES