Artículo
Neural network-based compensation control of mobile robots with partially known structure
Fecha de publicación:
04/2012
Editorial:
Institution of Engineering and Technology
Revista:
IET Control Theory and Applications
ISSN:
1751-8644
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral (PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations on their dynamics and kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.
Palabras clave:
Mobile robots
,
Neural network
,
Nonlinear control
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Neural network-based compensation control of mobile robots with partially known structure; Institution of Engineering and Technology; IET Control Theory and Applications; 6; 12; 4-2012; 1851-1860
Compartir
Altmétricas