Mostrar el registro sencillo del ítem
dc.contributor.author
Larotonda, Gabriel Andrés

dc.date.available
2017-07-04T15:41:13Z
dc.date.issued
2008-12
dc.identifier.citation
Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-3228
dc.identifier.issn
0022-1236
dc.identifier.uri
http://hdl.handle.net/11336/19464
dc.description.abstract
In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Norm Inequality
dc.subject
Operator Ideal
dc.subject
Unitarily Invariant Norm
dc.subject
Weierstrass Factorization Theorem
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Norm inequalities in operator ideals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-03T16:50:17Z
dc.journal.volume
255
dc.journal.number
11
dc.journal.pagination
3208-3228
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.journal.title
Journal Of Functional Analysis

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002212360800267X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2008.06.028
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2275
Archivos asociados