Artículo
Norm inequalities in operator ideals
Fecha de publicación:
12/2008
Editorial:
Elsevier
Revista:
Journal Of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-3228
Compartir
Altmétricas