Mostrar el registro sencillo del ítem

dc.contributor.author
Müller, Stefan  
dc.contributor.author
Feliu, Elisenda  
dc.contributor.author
Regensburger, Georg  
dc.contributor.author
Conradi, Carsten  
dc.contributor.author
Shiu, Anne  
dc.contributor.author
Dickenstein, Alicia Marcela  
dc.date.available
2017-06-30T21:54:53Z  
dc.date.issued
2016-02  
dc.identifier.citation
Müller, Stefan; Feliu, Elisenda; Regensburger, Georg; Conradi, Carsten; Shiu, Anne; et al.; Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry; Springer; Foundations Of Computational Mathematics; 16; 1; 2-2016; 67-97  
dc.identifier.issn
1615-3375  
dc.identifier.uri
http://hdl.handle.net/11336/19362  
dc.description.abstract
We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomial maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our work recognizes a prior result of Craciun, Garcia-Puente, and Sottile, together with work of two of the authors, as the first partial multivariate generalization of the classical Descartes’ rule, which bounds the number of positive real roots of a univariate real polynomial in terms of the number of sign variations of its coefficients.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Matroides Orientados  
dc.subject
Inyectividad de Aplicaciones Polinomiales  
dc.subject
Redes de Reacciones Bioquimicas  
dc.subject
Regla de Descartes  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:08:41Z  
dc.identifier.eissn
1615-3383  
dc.journal.volume
16  
dc.journal.number
1  
dc.journal.pagination
67-97  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Müller, Stefan. Austrian Academy of Sciences; Austria  
dc.description.fil
Fil: Feliu, Elisenda. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Regensburger, Georg. Austrian Academy of Sciences; Austria  
dc.description.fil
Fil: Conradi, Carsten. Max-Planck-Institut Dynamik komplexer technischer Systeme; Alemania  
dc.description.fil
Fil: Shiu, Anne. Texas A&M University; Estados Unidos  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Foundations Of Computational Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10208-014-9239-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-014-9239-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.5493