Artículo
Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry
Müller, Stefan; Feliu, Elisenda; Regensburger, Georg; Conradi, Carsten; Shiu, Anne; Dickenstein, Alicia Marcela
Fecha de publicación:
02/2016
Editorial:
Springer
Revista:
Foundations Of Computational Mathematics
ISSN:
1615-3375
e-ISSN:
1615-3383
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomial maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our work recognizes a prior result of Craciun, Garcia-Puente, and Sottile, together with work of two of the authors, as the first partial multivariate generalization of the classical Descartes’ rule, which bounds the number of positive real roots of a univariate real polynomial in terms of the number of sign variations of its coefficients.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Müller, Stefan; Feliu, Elisenda; Regensburger, Georg; Conradi, Carsten; Shiu, Anne; et al.; Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry; Springer; Foundations Of Computational Mathematics; 16; 1; 2-2016; 67-97
Compartir
Altmétricas