Mostrar el registro sencillo del ítem
dc.contributor.author
Zapico, Adriana Maria
dc.contributor.author
Molisani Yolitti, Leonardo
dc.contributor.author
Del Real, J. C.
dc.contributor.author
Ballesteros, Yamila
dc.date.available
2023-04-12T15:07:26Z
dc.date.issued
2011-08
dc.identifier.citation
Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila; Global fault detection in adhesively bonded joints using artificial intelligence; Brill Academic Publishers; Journal of Adhesion Science and Technology; 25; 18; 8-2011; 2435-2443
dc.identifier.issn
0169-4243
dc.identifier.uri
http://hdl.handle.net/11336/193492
dc.description.abstract
In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Brill Academic Publishers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BONDED JOINTS
dc.subject
FAULT DIAGNOSIS
dc.subject
FREQUENCY RESPONSE FUNCTIONS (FRFS)
dc.subject
NEURAL NETWORKS
dc.subject.classification
Mecánica Aplicada
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Global fault detection in adhesively bonded joints using artificial intelligence
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-04-11T14:31:46Z
dc.identifier.eissn
1568-5616
dc.journal.volume
25
dc.journal.number
18
dc.journal.pagination
2435-2443
dc.journal.pais
Países Bajos
dc.journal.ciudad
Leiden
dc.description.fil
Fil: Zapico, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina
dc.description.fil
Fil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina
dc.description.fil
Fil: Del Real, J. C.. Universidad Pontificia Comillas de Madrid; España
dc.description.fil
Fil: Ballesteros, Yamila. Universidad Pontificia Comillas de Madrid; España
dc.journal.title
Journal of Adhesion Science and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1163/016942411X580126
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1163/016942411X580126
Archivos asociados