Mostrar el registro sencillo del ítem

dc.contributor.author
Zapico, Adriana Maria  
dc.contributor.author
Molisani Yolitti, Leonardo  
dc.contributor.author
Del Real, J. C.  
dc.contributor.author
Ballesteros, Yamila  
dc.date.available
2023-04-12T15:07:26Z  
dc.date.issued
2011-08  
dc.identifier.citation
Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila; Global fault detection in adhesively bonded joints using artificial intelligence; Brill Academic Publishers; Journal of Adhesion Science and Technology; 25; 18; 8-2011; 2435-2443  
dc.identifier.issn
0169-4243  
dc.identifier.uri
http://hdl.handle.net/11336/193492  
dc.description.abstract
In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Brill Academic Publishers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BONDED JOINTS  
dc.subject
FAULT DIAGNOSIS  
dc.subject
FREQUENCY RESPONSE FUNCTIONS (FRFS)  
dc.subject
NEURAL NETWORKS  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Global fault detection in adhesively bonded joints using artificial intelligence  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-11T14:31:46Z  
dc.identifier.eissn
1568-5616  
dc.journal.volume
25  
dc.journal.number
18  
dc.journal.pagination
2435-2443  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Leiden  
dc.description.fil
Fil: Zapico, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina  
dc.description.fil
Fil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina  
dc.description.fil
Fil: Del Real, J. C.. Universidad Pontificia Comillas de Madrid; España  
dc.description.fil
Fil: Ballesteros, Yamila. Universidad Pontificia Comillas de Madrid; España  
dc.journal.title
Journal of Adhesion Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1163/016942411X580126  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1163/016942411X580126