Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence

Zapico, Adriana MariaIcon ; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila
Fecha de publicación: 08/2011
Editorial: Brill Academic Publishers
Revista: Journal of Adhesion Science and Technology
ISSN: 0169-4243
e-ISSN: 1568-5616
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

In general, non-destructive evaluation is applied to detect and localize structural faults using a signal with a wavelength smaller than the detected fault. But the method requires analyzing the object in numerous small sections to detect the damage. Non-invasive diagnosis methods for fault detection are used in different industrial sectors. In this work, the main focus is on global fault detection for structural mechanical components such as a bonded beam using artificial intelligence, i.e., neural nets. Therefore, the fault detection procedure requires only a global measurement in the structural component in operational conditions. An experimental setup using two aluminum beams bonded with an adhesive was used to simulate a bonded joint. Different sizes of adhesive surface simulate faults in the original adhesive joint. Thereafter, resonance frequency shifts in the Frequency Response Functions (FRFs) were used to detect structural faults. Damage in structures causes small changes in the structural resonances. Then, the FRFs were used as an input into an artificial supervised neural network. This work considers global non-destructive tests focused only on the soundness estimation of the system. The neural network involved is a supervised feed-forward network with Levenberg-Marquardt backpropagation algorithm, which classifies the beams in four clusters. The classification consists in beam damaged or not damaged. If the beam is damaged the intensity of the fault is established.
Palabras clave: BONDED JOINTS , FAULT DIAGNOSIS , FREQUENCY RESPONSE FUNCTIONS (FRFS) , NEURAL NETWORKS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 429.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/193492
URL: https://www.tandfonline.com/doi/abs/10.1163/016942411X580126
DOI: http://dx.doi.org/10.1163/016942411X580126
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Zapico, Adriana Maria; Molisani Yolitti, Leonardo; Del Real, J. C.; Ballesteros, Yamila; Global Fault Detection in Adhesively Bonded Joints Using Artificial Intelligence; Brill Academic Publishers; Journal of Adhesion Science and Technology; 25; 18; 8-2011; 2435-2443
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES