Mostrar el registro sencillo del ítem

dc.contributor.author
Plastino, Angel Ricardo  
dc.contributor.author
Vignat, C.  
dc.contributor.author
Plastino, A.  
dc.date.available
2017-06-29T20:47:46Z  
dc.date.issued
2015-03  
dc.identifier.citation
Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278  
dc.identifier.issn
0253-6102  
dc.identifier.uri
http://hdl.handle.net/11336/19215  
dc.description.abstract
A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Iop Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Classical Field Theory  
dc.subject
Non-Hermitian Hamiltonian  
dc.subject
Position-Dependent Mass  
dc.subject
Schrödinger Equation  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-08T17:16:07Z  
dc.journal.volume
63  
dc.journal.number
3  
dc.journal.pagination
275-278  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; Francia  
dc.description.fil
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; Argentina  
dc.journal.title
Communications In Theoretical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275