Mostrar el registro sencillo del ítem
dc.contributor.author
Plastino, Angel Ricardo
dc.contributor.author
Vignat, C.
dc.contributor.author
Plastino, A.
dc.date.available
2017-06-29T20:47:46Z
dc.date.issued
2015-03
dc.identifier.citation
Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278
dc.identifier.issn
0253-6102
dc.identifier.uri
http://hdl.handle.net/11336/19215
dc.description.abstract
A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Iop Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Classical Field Theory
dc.subject
Non-Hermitian Hamiltonian
dc.subject
Position-Dependent Mass
dc.subject
Schrödinger Equation
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-08T17:16:07Z
dc.journal.volume
63
dc.journal.number
3
dc.journal.pagination
275-278
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
dc.description.fil
Fil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; Francia
dc.description.fil
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; Argentina
dc.journal.title
Communications In Theoretical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275
Archivos asociados