Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass

Plastino, Angel RicardoIcon ; Vignat, C.; Plastino, A.
Fecha de publicación: 03/2015
Editorial: Iop Publishing
Revista: Communications In Theoretical Physics
ISSN: 0253-6102
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.
Palabras clave: Classical Field Theory , Non-Hermitian Hamiltonian , Position-Dependent Mass , Schrödinger Equation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 242.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/19215
URL: http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES