Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Salibian Barrera, Matías Octavio  
dc.date.available
2017-06-28T20:32:21Z  
dc.date.issued
2015-07  
dc.identifier.citation
Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; S-Estimators for Functional Principal Component Analysis; American Statistical Association; Journal of The American Statistical Association; 110; 511; 7-2015; 1100-1111  
dc.identifier.issn
0162-1459  
dc.identifier.uri
http://hdl.handle.net/11336/19059  
dc.description.abstract
Principal component analysis is a widely used technique that provides an optimal lower-dimensional approximation to multivariate or functional datasets. These approximations can be very useful in identifying potential outliers among high-dimensional or functional observations. In this article, we propose a new class of estimators for principal components based on robust scale estimators. For a fixed dimension q, we robustly estimate the q-dimensional linear space that provides the best prediction for the data, in the sense of minimizing the sum of robust scale estimators of the coordinates of the residuals. We also study an extension to the infinite-dimensional case. Our method is consistent for elliptical random vectors, and is Fisher consistent for elliptically distributed random elements on arbitrary Hilbert spaces. Numerical experiments show that our proposal is highly competitive when compared with other methods. We illustrate our approach on a real dataset, where the robust estimator discovers atypical observations that would have been missed otherwise. Supplementary materials for this article are available online.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Statistical Association  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Functional Data Analysis  
dc.subject
Robust Estimation  
dc.subject
Sparse Data  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
S-Estimators for Functional Principal Component Analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:08:10Z  
dc.journal.volume
110  
dc.journal.number
511  
dc.journal.pagination
1100-1111  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina  
dc.description.fil
Fil: Salibian Barrera, Matías Octavio. University of British Columbia; Canadá  
dc.journal.title
Journal of The American Statistical Association  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01621459.2014.946991  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/01621459.2014.946991