Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

S-Estimators for Functional Principal Component Analysis

Boente Boente, Graciela LinaIcon ; Salibian Barrera, Matías Octavio
Fecha de publicación: 07/2015
Editorial: American Statistical Association
Revista: Journal of The American Statistical Association
ISSN: 0162-1459
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Principal component analysis is a widely used technique that provides an optimal lower-dimensional approximation to multivariate or functional datasets. These approximations can be very useful in identifying potential outliers among high-dimensional or functional observations. In this article, we propose a new class of estimators for principal components based on robust scale estimators. For a fixed dimension q, we robustly estimate the q-dimensional linear space that provides the best prediction for the data, in the sense of minimizing the sum of robust scale estimators of the coordinates of the residuals. We also study an extension to the infinite-dimensional case. Our method is consistent for elliptical random vectors, and is Fisher consistent for elliptically distributed random elements on arbitrary Hilbert spaces. Numerical experiments show that our proposal is highly competitive when compared with other methods. We illustrate our approach on a real dataset, where the robust estimator discovers atypical observations that would have been missed otherwise. Supplementary materials for this article are available online.
Palabras clave: Functional Data Analysis , Robust Estimation , Sparse Data
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1016.Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/19059
DOI: http://dx.doi.org/10.1080/01621459.2014.946991
URL: http://www.tandfonline.com/doi/full/10.1080/01621459.2014.946991
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; S-Estimators for Functional Principal Component Analysis; American Statistical Association; Journal of The American Statistical Association; 110; 511; 7-2015; 1100-1111
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES