Artículo
S-Estimators for Functional Principal Component Analysis
Fecha de publicación:
07/2015
Editorial:
American Statistical Association
Revista:
Journal of The American Statistical Association
ISSN:
0162-1459
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Principal component analysis is a widely used technique that provides an optimal lower-dimensional approximation to multivariate or functional datasets. These approximations can be very useful in identifying potential outliers among high-dimensional or functional observations. In this article, we propose a new class of estimators for principal components based on robust scale estimators. For a fixed dimension q, we robustly estimate the q-dimensional linear space that provides the best prediction for the data, in the sense of minimizing the sum of robust scale estimators of the coordinates of the residuals. We also study an extension to the infinite-dimensional case. Our method is consistent for elliptical random vectors, and is Fisher consistent for elliptically distributed random elements on arbitrary Hilbert spaces. Numerical experiments show that our proposal is highly competitive when compared with other methods. We illustrate our approach on a real dataset, where the robust estimator discovers atypical observations that would have been missed otherwise. Supplementary materials for this article are available online.
Palabras clave:
Functional Data Analysis
,
Robust Estimation
,
Sparse Data
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; S-Estimators for Functional Principal Component Analysis; American Statistical Association; Journal of The American Statistical Association; 110; 511; 7-2015; 1100-1111
Compartir
Altmétricas