Mostrar el registro sencillo del ítem
dc.contributor.author
Dickenstein, Alicia Marcela
dc.contributor.author
di Rocco, Sandra
dc.contributor.author
Piene, Ragni
dc.date.available
2017-06-28T20:32:13Z
dc.date.issued
2014-08
dc.identifier.citation
Dickenstein, Alicia Marcela; di Rocco, Sandra; Piene, Ragni; Higher order duality and toric embeddings; Annales Inst Fourier; Annales de L Institut Fourier; 64; 1; 8-2014; 375-400
dc.identifier.issn
0373-0956
dc.identifier.uri
http://hdl.handle.net/11336/19058
dc.description.abstract
The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the tropicalization of all higher order dual varieties of an equivariantly embedded (not necessarily normal) toric variety.
dc.description.abstract
La notion de variété duale d’ordre supérieur d’une variété projective, introduite par Piene en 1983, est une généralisation naturelle de la notion classique de dualité projective. Dans cet article, nous étudions les variétés duales d’ordre supérieur d’une immersion torique projective. Nous exprimons le degré de la variété duale d’ordre 2 d’une immersion 2-jet régulière, lisse et de dimension 3 en termes géometriques et combinatoires, et nous donnons une classification des variétés ayant une variété duale d’ordre 2 de dimension plus petite qu’attendu. Nous décrivons aussi la tropicalisation des variétés duales de tout ordre d’une variété torique immersée de façon équivariante (pas nécessairement normale).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Annales Inst Fourier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Higher Dual Variety
dc.subject
Toric Variety
dc.subject
Tropicalization
dc.subject
Degree
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Higher order duality and toric embeddings
dc.title
Dualité d’ordre supérieur et immersions toriques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-23T14:13:48Z
dc.journal.volume
64
dc.journal.number
1
dc.journal.pagination
375-400
dc.journal.pais
Francia
dc.journal.ciudad
Grenoble
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: di Rocco, Sandra. Royal Institute Of Technology; Suecia
dc.description.fil
Fil: Piene, Ragni. University Of Oslo; Noruega
dc.journal.title
Annales de L Institut Fourier
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.4641
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5802/aif.2851
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aif.cedram.org/item?id=AIF_2014__64_1_375_0
Archivos asociados