Mostrar el registro sencillo del ítem

dc.contributor.author
Wio, Horacio Sergio  
dc.contributor.author
Escudero, Carlos  
dc.contributor.author
Revelli, Jorge Alberto  
dc.contributor.author
Deza, Roberto Raul  
dc.contributor.author
De La Lama, Marta S.  
dc.date.available
2023-03-14T15:18:39Z  
dc.date.issued
2011-01  
dc.identifier.citation
Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar-Parisi-Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-411  
dc.identifier.issn
1364-503X  
dc.identifier.uri
http://hdl.handle.net/11336/190505  
dc.description.abstract
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
The Royal Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DOMAIN GROWTH  
dc.subject
GALILEAN INVARIANCE  
dc.subject
GROWTH DYNAMICS  
dc.subject
VARIATIONAL FORMULATION  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Recent developments on the Kardar-Parisi-Zhang surface-growth equation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-03-10T14:30:37Z  
dc.identifier.eissn
1471-2962  
dc.journal.volume
369  
dc.journal.number
1935  
dc.journal.pagination
396-411  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Wio, Horacio Sergio. Universidad de Cantabria; España  
dc.description.fil
Fil: Escudero, Carlos. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.description.fil
Fil: Revelli, Jorge Alberto. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Deza, Roberto Raul. Universidad Nacional de Mar del Plata; Argentina  
dc.description.fil
Fil: De La Lama, Marta S.. Max Planck Institute for Dynamics and Self-Organization; Alemania  
dc.journal.title
Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1098/rsta.2010.0259  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0259