Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Recent developments on the Kardar–Parisi–Zhang surface-growth equation

Wio, Horacio SergioIcon ; Escudero, Carlos; Revelli, Jorge AlbertoIcon ; Deza, Roberto Raul; De La Lama, Marta S.
Fecha de publicación: 01/2011
Editorial: The Royal Society
Revista: Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences
ISSN: 1364-503X
e-ISSN: 1471-2962
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here-among other topics-we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation. This journal is © 2011 The Royal Society.
Palabras clave: DOMAIN GROWTH , GALILEAN INVARIANCE , GROWTH DYNAMICS , VARIATIONAL FORMULATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 349.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/190505
DOI: http://dx.doi.org/10.1098/rsta.2010.0259
URL: https://royalsocietypublishing.org/doi/10.1098/rsta.2010.0259
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IFIMAR)
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Citación
Wio, Horacio Sergio; Escudero, Carlos; Revelli, Jorge Alberto; Deza, Roberto Raul; De La Lama, Marta S.; Recent developments on the Kardar–Parisi–Zhang surface-growth equation; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 369; 1935; 1-2011; 396-411
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES