Mostrar el registro sencillo del ítem
dc.contributor.author
Larotonda, Gabriel Andrés
dc.date.available
2017-06-26T21:24:28Z
dc.date.issued
2016-05
dc.identifier.citation
Larotonda, Gabriel Andrés; Young's (in)equality for compact operators; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 233; 2; 5-2016; 169-181
dc.identifier.issn
0039-3223
dc.identifier.uri
http://hdl.handle.net/11336/18948
dc.description.abstract
If a, b are n × n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p > 1 and 1/p + 1/q = 1, then λk(|ab∗ |) ≤ λk 1 p |a| p + 1 q |b| q for all k. Later, this result was extended for the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. Farenick and R. Zeng. In this paper we prove that if a, b are compact operators, then equality holds in Young’s inequality if and only if |a| p = |b| q .
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Polish Acad Sciences Inst Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Young Inequality
dc.subject
Compact Operator
dc.subject
Singular Value
dc.subject
Spectrum
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Young's (in)equality for compact operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T19:51:20Z
dc.journal.volume
233
dc.journal.number
2
dc.journal.pagination
169-181
dc.journal.pais
Polonia
dc.journal.ciudad
Varsovia
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.journal.title
Studia Mathematica
Archivos asociados