Artículo
Young's (in)equality for compact operators
Fecha de publicación:
05/2016
Editorial:
Polish Acad Sciences Inst Mathematics
Revista:
Studia Mathematica
ISSN:
0039-3223
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
If a, b are n × n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p > 1 and 1/p + 1/q = 1, then λk(|ab∗ |) ≤ λk 1 p |a| p + 1 q |b| q for all k. Later, this result was extended for the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. Farenick and R. Zeng. In this paper we prove that if a, b are compact operators, then equality holds in Young’s inequality if and only if |a| p = |b| q .
Palabras clave:
Young Inequality
,
Compact Operator
,
Singular Value
,
Spectrum
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Larotonda, Gabriel Andrés; Young's (in)equality for compact operators; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 233; 2; 5-2016; 169-181
Compartir