Mostrar el registro sencillo del ítem

dc.contributor.author
Armendariz, Inés  
dc.contributor.author
Ferrari, Pablo Augusto  
dc.contributor.author
Groisman, Pablo Jose  
dc.contributor.author
Leonardi, Florencia Graciela  
dc.date.available
2017-06-26T21:21:00Z  
dc.date.issued
2015-03  
dc.identifier.citation
Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-1233  
dc.identifier.issn
0022-4715  
dc.identifier.uri
http://hdl.handle.net/11336/18945  
dc.description.abstract
We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Random Perturbation  
dc.subject
Cycles  
dc.subject
Loss Netwoark  
dc.subject
Gibbs Measures  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Finite Cycle Gibbs Measures on Permutations of Zd  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:07:27Z  
dc.journal.volume
158  
dc.journal.number
6  
dc.journal.pagination
1213-1233  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; Brasil  
dc.journal.title
Journal Of Statistical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10955-014-1169-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1169-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.6542