Artículo
Finite Cycle Gibbs Measures on Permutations of Zd
Fecha de publicación:
03/2015
Editorial:
Springer
Revista:
Journal Of Statistical Physics
ISSN:
0022-4715
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.
Palabras clave:
Random Perturbation
,
Cycles
,
Loss Netwoark
,
Gibbs Measures
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-1233
Compartir
Altmétricas