Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters - an application to the maternal animal model

Munilla, S.; Cantet, Rodolfo Juan CarlosIcon
Fecha de publicación: 06/2012
Editorial: Wiley Blackwell Publishing, Inc
Revista: Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie
ISSN: 0931-2668
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Producción Animal y Lechería

Resumen

Consider the estimation of genetic (co)variance components from a maternal animal model (MAM) using a conjugated Bayesian approach. Usually, more uncertainty is expected a priori on the value of the maternal additive variance than on the value of the direct additive variance. However, it is not possible to model such differential uncertainty when assuming an inverted Wishart (IW) distribution for the genetic covariance matrix. Instead, consider the use of a generalized inverted Wishart (GIW) distribution. The GIW is essentially an extension of the IW distribution with a larger set of distinct parameters. In this study, the GIW distribution in its full generality is introduced and theoretical results regarding its use as the prior distribution for the genetic covariance matrix of the MAM are derived. In particular, we prove that the conditional conjugacy property holds so that parameter estimation can be accomplished via the Gibbs sampler. A sampling algorithm is also sketched. Furthermore, we describe how to specify the hyperparameters to account for differential prior opinion on the (co)variance components. A recursive strategy to elicit these parameters is then presented and tested using field records and simulated data. The procedure returned accurate estimates and reduced standard errors when compared with non-informative prior settings while improving the convergence rates. In general, faster convergence was always observed when a stronger weight was placed on the prior distributions. However, analyses based on the IW distribution have also produced biased estimates when the prior means were set to over-dispersed values.
Palabras clave: ELICITATION METHODS , GIBBS SAMPLER , PRIOR DISTRIBUTIONS , VARIANCE COMPONENTS ESTIMATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 229.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/189192
URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0388.2011.00953.x/abstract
DOI: http://dx.doi.org/10.1111/j.1439-0388.2011.00953.x
Colecciones
Articulos(OCA PQUE. CENTENARIO)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA PQUE. CENTENARIO
Citación
Munilla, S.; Cantet, Rodolfo Juan Carlos; Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters - an application to the maternal animal model; Wiley Blackwell Publishing, Inc; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 129; 3; 6-2012; 173-187
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES