Mostrar el registro sencillo del ítem

dc.contributor.author
Munilla, S.  
dc.contributor.author
Cantet, Rodolfo Juan Carlos  
dc.date.available
2023-03-01T13:53:56Z  
dc.date.issued
2012-06  
dc.identifier.citation
Munilla, S.; Cantet, Rodolfo Juan Carlos; Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters - an application to the maternal animal model; Wiley Blackwell Publishing, Inc; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 129; 3; 6-2012; 173-187  
dc.identifier.issn
0931-2668  
dc.identifier.uri
http://hdl.handle.net/11336/189192  
dc.description.abstract
Consider the estimation of genetic (co)variance components from a maternal animal model (MAM) using a conjugated Bayesian approach. Usually, more uncertainty is expected a priori on the value of the maternal additive variance than on the value of the direct additive variance. However, it is not possible to model such differential uncertainty when assuming an inverted Wishart (IW) distribution for the genetic covariance matrix. Instead, consider the use of a generalized inverted Wishart (GIW) distribution. The GIW is essentially an extension of the IW distribution with a larger set of distinct parameters. In this study, the GIW distribution in its full generality is introduced and theoretical results regarding its use as the prior distribution for the genetic covariance matrix of the MAM are derived. In particular, we prove that the conditional conjugacy property holds so that parameter estimation can be accomplished via the Gibbs sampler. A sampling algorithm is also sketched. Furthermore, we describe how to specify the hyperparameters to account for differential prior opinion on the (co)variance components. A recursive strategy to elicit these parameters is then presented and tested using field records and simulated data. The procedure returned accurate estimates and reduced standard errors when compared with non-informative prior settings while improving the convergence rates. In general, faster convergence was always observed when a stronger weight was placed on the prior distributions. However, analyses based on the IW distribution have also produced biased estimates when the prior means were set to over-dispersed values.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ELICITATION METHODS  
dc.subject
GIBBS SAMPLER  
dc.subject
PRIOR DISTRIBUTIONS  
dc.subject
VARIANCE COMPONENTS ESTIMATION  
dc.subject.classification
Otras Producción Animal y Lechería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters - an application to the maternal animal model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-27T17:42:12Z  
dc.journal.volume
129  
dc.journal.number
3  
dc.journal.pagination
173-187  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina  
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0388.2011.00953.x/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/j.1439-0388.2011.00953.x