Mostrar el registro sencillo del ítem
dc.contributor.author
Munilla, S.
dc.contributor.author
Cantet, Rodolfo Juan Carlos
dc.date.available
2023-03-01T13:53:56Z
dc.date.issued
2012-06
dc.identifier.citation
Munilla, S.; Cantet, Rodolfo Juan Carlos; Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters - an application to the maternal animal model; Wiley Blackwell Publishing, Inc; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 129; 3; 6-2012; 173-187
dc.identifier.issn
0931-2668
dc.identifier.uri
http://hdl.handle.net/11336/189192
dc.description.abstract
Consider the estimation of genetic (co)variance components from a maternal animal model (MAM) using a conjugated Bayesian approach. Usually, more uncertainty is expected a priori on the value of the maternal additive variance than on the value of the direct additive variance. However, it is not possible to model such differential uncertainty when assuming an inverted Wishart (IW) distribution for the genetic covariance matrix. Instead, consider the use of a generalized inverted Wishart (GIW) distribution. The GIW is essentially an extension of the IW distribution with a larger set of distinct parameters. In this study, the GIW distribution in its full generality is introduced and theoretical results regarding its use as the prior distribution for the genetic covariance matrix of the MAM are derived. In particular, we prove that the conditional conjugacy property holds so that parameter estimation can be accomplished via the Gibbs sampler. A sampling algorithm is also sketched. Furthermore, we describe how to specify the hyperparameters to account for differential prior opinion on the (co)variance components. A recursive strategy to elicit these parameters is then presented and tested using field records and simulated data. The procedure returned accurate estimates and reduced standard errors when compared with non-informative prior settings while improving the convergence rates. In general, faster convergence was always observed when a stronger weight was placed on the prior distributions. However, analyses based on the IW distribution have also produced biased estimates when the prior means were set to over-dispersed values.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ELICITATION METHODS
dc.subject
GIBBS SAMPLER
dc.subject
PRIOR DISTRIBUTIONS
dc.subject
VARIANCE COMPONENTS ESTIMATION
dc.subject.classification
Otras Producción Animal y Lechería
dc.subject.classification
Producción Animal y Lechería
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters - an application to the maternal animal model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-02-27T17:42:12Z
dc.journal.volume
129
dc.journal.number
3
dc.journal.pagination
173-187
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0388.2011.00953.x/abstract
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/j.1439-0388.2011.00953.x
Archivos asociados