Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Mazzitelli, Martin Diego
dc.date.available
2017-06-26T19:27:00Z
dc.date.issued
2015-03
dc.identifier.citation
Carando, Daniel Germán; Mazzitelli, Martin Diego; Bounded holomorphic functions attaining their norms in the bidual; Kyoto Univ; Publications Of The Research Institute For Mathematical Sciences; 51; 3; 3-2015; 489-512
dc.identifier.issn
0034-5318
dc.identifier.uri
http://hdl.handle.net/11336/18900
dc.description.abstract
Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Kyoto Univ
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Integral Formula
dc.subject
Norm Attaining Holomorphic Functions
dc.subject
Lindenstrauss-Type Theorems
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Bounded holomorphic functions attaining their norms in the bidual
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T14:07:40Z
dc.journal.volume
51
dc.journal.number
3
dc.journal.pagination
489-512
dc.journal.pais
Japón
dc.journal.ciudad
Kyoto
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Publications Of The Research Institute For Mathematical Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/PRIMS/162
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=51&iss=3&rank=3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.6431
Archivos asociados