Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Mazzitelli, Martin Diego  
dc.date.available
2017-06-26T19:27:00Z  
dc.date.issued
2015-03  
dc.identifier.citation
Carando, Daniel Germán; Mazzitelli, Martin Diego; Bounded holomorphic functions attaining their norms in the bidual; Kyoto Univ; Publications Of The Research Institute For Mathematical Sciences; 51; 3; 3-2015; 489-512  
dc.identifier.issn
0034-5318  
dc.identifier.uri
http://hdl.handle.net/11336/18900  
dc.description.abstract
Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Kyoto Univ  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Integral Formula  
dc.subject
Norm Attaining Holomorphic Functions  
dc.subject
Lindenstrauss-Type Theorems  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bounded holomorphic functions attaining their norms in the bidual  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:07:40Z  
dc.journal.volume
51  
dc.journal.number
3  
dc.journal.pagination
489-512  
dc.journal.pais
Japón  
dc.journal.ciudad
Kyoto  
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Publications Of The Research Institute For Mathematical Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/PRIMS/162  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=51&iss=3&rank=3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.6431