Artículo
Bounded holomorphic functions attaining their norms in the bidual
Fecha de publicación:
03/2015
Editorial:
Kyoto Univ
Revista:
Publications Of The Research Institute For Mathematical Sciences
ISSN:
0034-5318
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Under certain hypotheses on the Banach space X, we prove that the set of analytic functions in Au(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of X) whose Aron–Berner extensions attain their norms is dense in Au(X). This Lindenstrauss type result also holds for functions with values in a dual space or in a Banach space with the so-called property (β). We show that the Bishop–Phelps theorem does not hold for Au(c0, Z00) for a certain Banach space Z, while our Lindenstrauss theorem does. In order to obtain our results, we first handle their polynomial cases.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Carando, Daniel Germán; Mazzitelli, Martin Diego; Bounded holomorphic functions attaining their norms in the bidual; Kyoto Univ; Publications Of The Research Institute For Mathematical Sciences; 51; 3; 3-2015; 489-512
Compartir
Altmétricas