Mostrar el registro sencillo del ítem

dc.contributor.author
Bonomo, Flavia  
dc.contributor.author
Schaudt, Oliver  
dc.contributor.author
Stein, Maya  
dc.contributor.author
Valencia Pabon, Mario  
dc.date.available
2017-06-26T19:26:32Z  
dc.date.issued
2015-10  
dc.identifier.citation
Bonomo, Flavia; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario; b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs; Springer; Algorithmica; 73; 2; 10-2015; 289-305  
dc.identifier.issn
0178-4617  
dc.identifier.uri
http://hdl.handle.net/11336/18897  
dc.description.abstract
A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
B-Coloring  
dc.subject
Minimum Maxinal Matching  
dc.subject
Co-Bipartite Graphs  
dc.subject
Graphs with Stability Number Two  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:07:12Z  
dc.identifier.eissn
1432-0541  
dc.journal.volume
73  
dc.journal.number
2  
dc.journal.pagination
289-305  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Schaudt, Oliver. Universite Pierre et Marie Curie; Francia  
dc.description.fil
Fil: Stein, Maya. Universidad de Chile; Chile  
dc.description.fil
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia  
dc.journal.title
Algorithmica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00453-014-9921-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00453-014-9921-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.8313