Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs

Bonomo, FlaviaIcon ; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario
Fecha de publicación: 10/2015
Editorial: Springer
Revista: Algorithmica
ISSN: 0178-4617
e-ISSN: 1432-0541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Ciencias de la Computación

Resumen

A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = χ (G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic.
Palabras clave: B-Coloring , Minimum Maxinal Matching , Co-Bipartite Graphs , Graphs with Stability Number Two
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 457.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/18897
DOI: http://dx.doi.org/10.1007/s00453-014-9921-5
URL: https://link.springer.com/article/10.1007%2Fs00453-014-9921-5
URL: https://arxiv.org/abs/1310.8313
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bonomo, Flavia; Schaudt, Oliver; Stein, Maya; Valencia Pabon, Mario; b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree Cographs; Springer; Algorithmica; 73; 2; 10-2015; 289-305
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES