Mostrar el registro sencillo del ítem

dc.contributor.author
Ballaben, Jorge Sebastian  
dc.contributor.author
Goicoechea, Hector Eduardo  
dc.contributor.author
Rosales, Marta Beatriz  
dc.contributor.other
Etse, José G.  
dc.contributor.other
Luccioni, Bibiana Maria  
dc.contributor.other
Pucheta, Martín Alejo  
dc.contributor.other
Storti, Mario Alberto  
dc.date.available
2023-02-27T10:01:28Z  
dc.date.issued
2018  
dc.identifier.citation
An Alternative to Monte Carlo Simulation Method; XII Congreso Argentino de Mecánica Computacional; San Miguel de Tucumán; Argentina; 2018; 631-640  
dc.identifier.issn
2591-3522  
dc.identifier.uri
http://hdl.handle.net/11336/188863  
dc.description.abstract
The quantification and propagation of uncertainty is a growing discipline, with applications within practically all sciences. Uncertainties are present in every prediction model of each discipline (natural, structural, biological, etc), since an exact and perfect definition of geometry, boundary conditions, material properties, initial conditions and excitations (among others) is rarely possible. A common and robust approach to perform the propagation of uncertainties is the Monte Carlo method, which usually implies running a large number of simulations. Complex systems, where uncertainty propagation is particularly interesting, require time expensive computations, and large memory and storage capacities in order to process such amount of data. Even thousands of runs of a slightly non-linear model with a few degrees of freedom could take a considerable time, despite the use of state-of-the-art solvers and parallelization techniques. In this work, a methodology that could allow the reduction of the number of simulations is discussed. The idea of the method is to perform a parametric sweep for a certain parameter X to be considered stochastic, then assign probabilities (according to a previously selected cumulative probability density function) to the values of X, and finally map the corresponding probability values to the target variables. Hence, the probability density function of the target variables could be estimated. Within this work, the theory and implementation of the proposed method are discussed and application examples are provided.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Asociación Argentina de Mecánica Computacional  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
UNCERTAINTY PROPAGATION  
dc.subject
MONTE CARLO ALTERNATIVE  
dc.subject
PARAMETRIC SWEEP REUTILIZATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An Alternative to Monte Carlo Simulation Method  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-10-24T14:19:53Z  
dc.journal.volume
36  
dc.journal.number
15  
dc.journal.pagination
631-640  
dc.journal.pais
Argentina  
dc.journal.ciudad
San Miguel de Tucumán  
dc.description.fil
Fil: Ballaben, Jorge Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5563/5540  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
XII Congreso Argentino de Mecánica Computacional  
dc.date.evento
2018-11-06  
dc.description.ciudadEvento
San Miguel de Tucumán  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Asociación Argentina de Mecánica Computacional  
dc.source.revista
Mecánica Computacional  
dc.date.eventoHasta
2018-11-09  
dc.type
Congreso