Mostrar el registro sencillo del ítem
dc.contributor.author
Ballaben, Jorge Sebastian
dc.contributor.author
Goicoechea, Hector Eduardo
dc.contributor.author
Rosales, Marta Beatriz
dc.contributor.other
Etse, José G.
dc.contributor.other
Luccioni, Bibiana Maria
dc.contributor.other
Pucheta, Martín Alejo
dc.contributor.other
Storti, Mario Alberto
dc.date.available
2023-02-27T10:01:28Z
dc.date.issued
2018
dc.identifier.citation
An Alternative to Monte Carlo Simulation Method; XII Congreso Argentino de Mecánica Computacional; San Miguel de Tucumán; Argentina; 2018; 631-640
dc.identifier.issn
2591-3522
dc.identifier.uri
http://hdl.handle.net/11336/188863
dc.description.abstract
The quantification and propagation of uncertainty is a growing discipline, with applications within practically all sciences. Uncertainties are present in every prediction model of each discipline (natural, structural, biological, etc), since an exact and perfect definition of geometry, boundary conditions, material properties, initial conditions and excitations (among others) is rarely possible. A common and robust approach to perform the propagation of uncertainties is the Monte Carlo method, which usually implies running a large number of simulations. Complex systems, where uncertainty propagation is particularly interesting, require time expensive computations, and large memory and storage capacities in order to process such amount of data. Even thousands of runs of a slightly non-linear model with a few degrees of freedom could take a considerable time, despite the use of state-of-the-art solvers and parallelization techniques. In this work, a methodology that could allow the reduction of the number of simulations is discussed. The idea of the method is to perform a parametric sweep for a certain parameter X to be considered stochastic, then assign probabilities (according to a previously selected cumulative probability density function) to the values of X, and finally map the corresponding probability values to the target variables. Hence, the probability density function of the target variables could be estimated. Within this work, the theory and implementation of the proposed method are discussed and application examples are provided.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Asociación Argentina de Mecánica Computacional
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
UNCERTAINTY PROPAGATION
dc.subject
MONTE CARLO ALTERNATIVE
dc.subject
PARAMETRIC SWEEP REUTILIZATION
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An Alternative to Monte Carlo Simulation Method
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-10-24T14:19:53Z
dc.journal.volume
36
dc.journal.number
15
dc.journal.pagination
631-640
dc.journal.pais
Argentina
dc.journal.ciudad
San Miguel de Tucumán
dc.description.fil
Fil: Ballaben, Jorge Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Goicoechea, Hector Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
dc.description.fil
Fil: Rosales, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5563/5540
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Congreso
dc.description.nombreEvento
XII Congreso Argentino de Mecánica Computacional
dc.date.evento
2018-11-06
dc.description.ciudadEvento
San Miguel de Tucumán
dc.description.paisEvento
Argentina
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Asociación Argentina de Mecánica Computacional
dc.source.revista
Mecánica Computacional
dc.date.eventoHasta
2018-11-09
dc.type
Congreso
Archivos asociados