Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

An Alternative to Monte Carlo Simulation Method

Ballaben, Jorge SebastianIcon ; Goicoechea, Hector Eduardo; Rosales, Marta BeatrizIcon
Colaboradores: Etse, José G.; Luccioni, Bibiana MariaIcon ; Pucheta, Martín AlejoIcon ; Storti, Mario AlbertoIcon
Tipo del evento: Congreso
Nombre del evento: XII Congreso Argentino de Mecánica Computacional
Fecha del evento: 06/11/2018
Institución Organizadora: Asociación Argentina de Mecánica Computacional;
Título de la revista: Mecánica Computacional
Editorial: Asociación Argentina de Mecánica Computacional
ISSN: 2591-3522
Idioma: Inglés
Clasificación temática:
Estadística y Probabilidad

Resumen

The quantification and propagation of uncertainty is a growing discipline, with applications within practically all sciences. Uncertainties are present in every prediction model of each discipline (natural, structural, biological, etc), since an exact and perfect definition of geometry, boundary conditions, material properties, initial conditions and excitations (among others) is rarely possible. A common and robust approach to perform the propagation of uncertainties is the Monte Carlo method, which usually implies running a large number of simulations. Complex systems, where uncertainty propagation is particularly interesting, require time expensive computations, and large memory and storage capacities in order to process such amount of data. Even thousands of runs of a slightly non-linear model with a few degrees of freedom could take a considerable time, despite the use of state-of-the-art solvers and parallelization techniques. In this work, a methodology that could allow the reduction of the number of simulations is discussed. The idea of the method is to perform a parametric sweep for a certain parameter X to be considered stochastic, then assign probabilities (according to a previously selected cumulative probability density function) to the values of X, and finally map the corresponding probability values to the target variables. Hence, the probability density function of the target variables could be estimated. Within this work, the theory and implementation of the proposed method are discussed and application examples are provided.
Palabras clave: UNCERTAINTY PROPAGATION , MONTE CARLO ALTERNATIVE , PARAMETRIC SWEEP REUTILIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.019Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/188863
URL: https://cimec.org.ar/ojs/index.php/mc/article/view/5563/5540
Colecciones
Eventos(CCT - BAHIA BLANCA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Eventos(IFISUR)
Eventos de INSTITUTO DE FISICA DEL SUR
Citación
An Alternative to Monte Carlo Simulation Method; XII Congreso Argentino de Mecánica Computacional; San Miguel de Tucumán; Argentina; 2018; 631-640
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES