Mostrar el registro sencillo del ítem
dc.contributor.author
Cortázar, C.
dc.contributor.author
Elgueta, M.
dc.contributor.author
Quirós, Fernando
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2017-06-26T15:41:47Z
dc.date.issued
2016-04
dc.identifier.citation
Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610
dc.identifier.issn
0022-247X
dc.identifier.uri
http://hdl.handle.net/11336/18867
dc.description.abstract
We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Asymptotic Behavior
dc.subject
Nonlocal Diffusion
dc.subject
2 Dimensional Exterior Domains
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T14:08:59Z
dc.journal.volume
436
dc.journal.number
1
dc.journal.pagination
586-610
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Cortázar, C.. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Elgueta, M.. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Quirós, Fernando.
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Journal Of Mathematical Analysis And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmaa.2015.12.021
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15011270
Archivos asociados