Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case

Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi IreneIcon
Fecha de publicación: 04/2016
Editorial: Elsevier Inc
Revista: Journal Of Mathematical Analysis And Applications
ISSN: 0022-247X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
Palabras clave: Asymptotic Behavior , Nonlocal Diffusion , 2 Dimensional Exterior Domains
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 520.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/18867
DOI: https://doi.org/10.1016/j.jmaa.2015.12.021
URL: http://www.sciencedirect.com/science/article/pii/S0022247X15011270
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES