Artículo
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case
Fecha de publicación:
04/2016
Editorial:
Elsevier Inc
Revista:
Journal Of Mathematical Analysis And Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, ∂tu = J ∗ u − u, where J is a smooth, radially symmetric kernel with support Bd(0) ⊂ R2. The problem is set in an exterior two-dimensional domain which excludes a hole H, and with zero Dirichlet data on H. In the far field scale, ξ1 ≤ |x|t−1/2 ≤ ξ2 with ξ1, ξ2 > 0, the scaled function log t u(x,t) behaves as a multiple of the fundamental solution for the local heat equation with a certain diffusivity determined by J. The proportionality constant, which characterizes the first non-trivial term in the asymptotic behavior of the mass, is given by means of the asymptotic ‘logarithmic momentum’ of the solution, limt→∞ R2 u(x,t) log |x| dx. This asymptotic quantity can be easily computed in terms of the initial data. In the near field scale, |x| ≤ t1/2h(t) with limt→∞ h(t) = 0, the scaled function t(log t)2u(x,t)/ log |x| converges to a multiple of φ(x)/ log |x|, where φ is the unique stationary solution of the problem that behaves as log |x| when |x| → ∞. The proportionality constant is obtained through a matching procedure with the far field limit. Finally, in the very far field, |x| ≥ t1/2g(t) with g(t) → ∞, the solution is proved to be of order o((tlog t)−1).
Palabras clave:
Asymptotic Behavior
,
Nonlocal Diffusion
,
2 Dimensional Exterior Domains
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, C.; Elgueta, M.; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation in exterior domains: the critical two-dimensional case; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 436; 1; 4-2016; 586-610
Compartir
Altmétricas