Mostrar el registro sencillo del ítem
dc.contributor.author
Galicer, Daniel Eric
dc.contributor.author
Villafañe, Norberto Román
dc.date.available
2017-06-26T15:41:18Z
dc.date.issued
2015-01
dc.identifier.citation
Galicer, Daniel Eric; Villafañe, Norberto Román; Coincidence of extendible vector-valued ideals with their minimal kernel; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 421; 2; 1-2015; 1743-1766
dc.identifier.issn
0022-247X
dc.identifier.uri
http://hdl.handle.net/11336/18864
dc.description.abstract
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if A is an ideal of n-linear mappings we give conditions for which the equality A(E1, ..., En; F) = Amin(E1, ..., En; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space A(E1, ..., En; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where A is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Multilinear Mappings
dc.subject
Radon-Nikodým Property
dc.subject
Polynomial Ideals
dc.subject
Metric Theory of Tensor Products
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Coincidence of extendible vector-valued ideals with their minimal kernel
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T14:07:49Z
dc.journal.volume
421
dc.journal.number
2
dc.journal.pagination
1743-1766
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.description.fil
Fil: Villafañe, Norberto Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Journal Of Mathematical Analysis And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2014.07.023
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X14006660
Archivos asociados