Artículo
Coincidence of extendible vector-valued ideals with their minimal kernel
Fecha de publicación:
01/2015
Editorial:
Elsevier Inc
Revista:
Journal Of Mathematical Analysis And Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if A is an ideal of n-linear mappings we give conditions for which the equality A(E1, ..., En; F) = Amin(E1, ..., En; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space A(E1, ..., En; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where A is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Galicer, Daniel Eric; Villafañe, Norberto Román; Coincidence of extendible vector-valued ideals with their minimal kernel; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 421; 2; 1-2015; 1743-1766
Compartir
Altmétricas