Mostrar el registro sencillo del ítem

dc.contributor.author
Menni, Matías  
dc.date.available
2023-02-17T12:34:53Z  
dc.date.issued
2022-10  
dc.identifier.citation
Menni, Matías; Maps with Discrete Fibers and the Origin of Basepoints; Springer; Applied Categorical Structures; 30; 5; 10-2022; 991-1015  
dc.identifier.issn
0927-2852  
dc.identifier.uri
http://hdl.handle.net/11336/188346  
dc.description.abstract
Let p: E→ S be a hyperconnected geometric morphism. For each X in the ‘gros’ topos E, there is a hyperconnected geometric morphism pX: E/ X→ S(X) from the slice over X to the ‘petit’ topos of maps (over X) with discrete fibers. We show that if p is essential then pX is essential for every X. The proof involves the idea of collapsing a connected subspace to a ‘basepoint’, as in Algebraic Topology, but formulated in topos-theoretic terms. In case p is local, we characterize when pX is local for every X. This is a very restrictive property, typical of toposes of spaces of dimension ≤ 1.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUFHEBUNG  
dc.subject
AXIOMATIC COHESION  
dc.subject
DISCRETE FIBERS  
dc.subject
TOPOS THEORY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Maps with Discrete Fibers and the Origin of Basepoints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-09T15:43:33Z  
dc.journal.volume
30  
dc.journal.number
5  
dc.journal.pagination
991-1015  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina  
dc.journal.title
Applied Categorical Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10485-022-09680-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10485-022-09680-2