Artículo
Maps with Discrete Fibers and the Origin of Basepoints
Fecha de publicación:
10/2022
Editorial:
Springer
Revista:
Applied Categorical Structures
ISSN:
0927-2852
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let p: E→ S be a hyperconnected geometric morphism. For each X in the ‘gros’ topos E, there is a hyperconnected geometric morphism pX: E/ X→ S(X) from the slice over X to the ‘petit’ topos of maps (over X) with discrete fibers. We show that if p is essential then pX is essential for every X. The proof involves the idea of collapsing a connected subspace to a ‘basepoint’, as in Algebraic Topology, but formulated in topos-theoretic terms. In case p is local, we characterize when pX is local for every X. This is a very restrictive property, typical of toposes of spaces of dimension ≤ 1.
Palabras clave:
AUFHEBUNG
,
AXIOMATIC COHESION
,
DISCRETE FIBERS
,
TOPOS THEORY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Menni, Matías; Maps with Discrete Fibers and the Origin of Basepoints; Springer; Applied Categorical Structures; 30; 5; 10-2022; 991-1015
Compartir
Altmétricas