Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Operator ideals and assembly maps in K-theory

Cortiñas, Guillermo HoracioIcon ; Tartaglia, GiselaIcon
Fecha de publicación: 12/2013
Editorial: American Mathematical Society
Revista: Proceedings of the American Mathematical Society
ISSN: 0002-9939
e-ISSN: 1088-6826
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the Schatten ideal Lp consisting of those operators whose sequence of singular values is p-summable; put S = S p Lp. Let G be a group and Vcyc the family of virtually cyclic subgroups. Guoliang Yu proved that the K-theory assembly map HG ∗ (E(G, Vcyc), K(S)) → K∗(S[G]) is rationally injective. His proof involves the construction of a certain Chern character tailored to work with coefficients S and the use of some results about algebraic K-theory of operator ideals and about controlled topology and coarse geometry. In this paper we give a different proof of Yu’s result. Our proof uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results on algebraic K-theory of operator ideals, but no controlled topology or coarse geometry techniques are used. We formulate the result in terms of homotopy K-theory. We prove that the rational assembly map HG ∗ (E(G, Fin), KH(L p )) ⊗ Q → KH∗(L p [G]) ⊗ Q is injective. We show that the latter map is equivalent to the assembly map considered by Yu, and thus obtain his result as a corollary.
Palabras clave: Algebraic K-Theory , Schatten Ideals , Isomorphism Conjecture , Cyclic Homology
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 329.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/18825
DOI: https://doi.org/10.1090/S0002-9939-2013-11837-X
URL: https://arxiv.org/abs/1202.4999
URL: http://www.ams.org/journals/proc/2014-142-04/S0002-9939-2013-11837-X/home.html
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Operator ideals and assembly maps in K-theory; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 12-2013; 1089-1099
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES