Mostrar el registro sencillo del ítem
dc.contributor.author
Cortiñas, Guillermo Horacio
dc.contributor.author
Tartaglia, Gisela
dc.date.available
2017-06-23T21:06:34Z
dc.date.issued
2013-12
dc.identifier.citation
Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Operator ideals and assembly maps in K-theory; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 12-2013; 1089-1099
dc.identifier.issn
0002-9939
dc.identifier.uri
http://hdl.handle.net/11336/18825
dc.description.abstract
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the Schatten ideal Lp consisting of those operators whose sequence of singular values is p-summable; put S = S p Lp. Let G be a group and Vcyc the family of virtually cyclic subgroups. Guoliang Yu proved that the K-theory assembly map HG ∗ (E(G, Vcyc), K(S)) → K∗(S[G]) is rationally injective. His proof involves the construction of a certain Chern character tailored to work with coefficients S and the use of some results about algebraic K-theory of operator ideals and about controlled topology and coarse geometry. In this paper we give a different proof of Yu’s result. Our proof uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results on algebraic K-theory of operator ideals, but no controlled topology or coarse geometry techniques are used. We formulate the result in terms of homotopy K-theory. We prove that the rational assembly map HG ∗ (E(G, Fin), KH(L p )) ⊗ Q → KH∗(L p [G]) ⊗ Q is injective. We show that the latter map is equivalent to the assembly map considered by Yu, and thus obtain his result as a corollary.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Algebraic K-Theory
dc.subject
Schatten Ideals
dc.subject
Isomorphism Conjecture
dc.subject
Cyclic Homology
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Operator ideals and assembly maps in K-theory
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-23T14:12:05Z
dc.identifier.eissn
1088-6826
dc.journal.volume
142
dc.journal.pagination
1089-1099
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.description.fil
Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Proceedings of the American Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/S0002-9939-2013-11837-X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1202.4999
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-04/S0002-9939-2013-11837-X/home.html
Archivos asociados