Mostrar el registro sencillo del ítem
dc.contributor.author
Bura, Efstathia
dc.contributor.author
Forzani, Liliana Maria
dc.contributor.author
García Arancibia, Rodrigo
dc.contributor.author
Llop Orzan, Pamela Nerina
dc.contributor.author
Tomassi, Diego Rodolfo
dc.date.available
2023-02-15T13:59:47Z
dc.date.issued
2022-02
dc.identifier.citation
Bura, Efstathia; Forzani, Liliana Maria; García Arancibia, Rodrigo; Llop Orzan, Pamela Nerina; Tomassi, Diego Rodolfo; Sufficient reductions in regression with mixed predictors; Microtome; Journal of Machine Learning Research; 23; 102; 2-2022; 1-46
dc.identifier.issn
1532-4435
dc.identifier.uri
http://hdl.handle.net/11336/188087
dc.description.abstract
Most data sets comprise of measurements on continuous and categorical variables. Yet,modeling high-dimensional mixed predictors has received limited attention in the regressionand classication statistical literature. We study the general regression problem of inferringon a variable of interest based on high dimensional mixed continuous and binary predictors.The aim is to nd a lower dimensional function of the mixed predictor vector that containsall the modeling information in the mixed predictors for the response, which can be eithercontinuous or categorical. The approach we propose identies sucient reductions byreversing the regression and modeling the mixed predictors conditional on the response.We derive the maximum likelihood estimator of the sucient reductions, asymptotic testsfor dimension, and a regularized estimator, which simultaneously achieves variable (feature)selection and dimension reduction (feature extraction). We study the performance of theproposed method and compare it with other approaches through simulations and real dataexamples.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Microtome
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
HIGH DIMENSIONAL
dc.subject
MULTIVARIATE BERNOULLI
dc.subject
REGULARIZATION
dc.subject
FEATURE SELECTION
dc.subject
FEATURE EXTRACTION
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sufficient reductions in regression with mixed predictors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-02-09T16:03:20Z
dc.journal.volume
23
dc.journal.number
102
dc.journal.pagination
1-46
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bura, Efstathia. Technische Universitat Wien; Austria
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.description.fil
Fil: García Arancibia, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina
dc.description.fil
Fil: Llop Orzan, Pamela Nerina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.journal.title
Journal of Machine Learning Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://jmlr.org/papers/v23/21-0175.html
Archivos asociados