Artículo
Sufficient reductions in regression with mixed predictors
Bura, Efstathia; Forzani, Liliana Maria
; García Arancibia, Rodrigo
; Llop Orzan, Pamela Nerina
; Tomassi, Diego Rodolfo
Fecha de publicación:
02/2022
Editorial:
Microtome
Revista:
Journal of Machine Learning Research
ISSN:
1532-4435
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Most data sets comprise of measurements on continuous and categorical variables. Yet,modeling high-dimensional mixed predictors has received limited attention in the regressionand classication statistical literature. We study the general regression problem of inferringon a variable of interest based on high dimensional mixed continuous and binary predictors.The aim is to nd a lower dimensional function of the mixed predictor vector that containsall the modeling information in the mixed predictors for the response, which can be eithercontinuous or categorical. The approach we propose identies sucient reductions byreversing the regression and modeling the mixed predictors conditional on the response.We derive the maximum likelihood estimator of the sucient reductions, asymptotic testsfor dimension, and a regularized estimator, which simultaneously achieves variable (feature)selection and dimension reduction (feature extraction). We study the performance of theproposed method and compare it with other approaches through simulations and real dataexamples.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Bura, Efstathia; Forzani, Liliana Maria; García Arancibia, Rodrigo; Llop Orzan, Pamela Nerina; Tomassi, Diego Rodolfo; Sufficient reductions in regression with mixed predictors; Microtome; Journal of Machine Learning Research; 23; 102; 2-2022; 1-46
Compartir