Mostrar el registro sencillo del ítem

dc.contributor.author
Aguirre, Adrian Marcelo  
dc.contributor.author
Mendez, Carlos Alberto  
dc.contributor.author
Gutierrez, Gloria Maribel  
dc.contributor.author
de Prada, Cesar  
dc.date.available
2017-06-23T19:36:54Z  
dc.date.issued
2012-12  
dc.identifier.citation
Aguirre, Adrian Marcelo; Mendez, Carlos Alberto; Gutierrez, Gloria Maribel; de Prada, Cesar; An improvement-based MILP optimization approach to complex AWS scheduling; Elsevier; Computers And Chemical Engineering; 47; 12-2012; 217-226  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/18787  
dc.description.abstract
The automated wet-etch station (AWS) is one of the most critical stages of a modern semiconductor manufacturing system (SMS), which has to simultaneously deal with many complex constraints and limited resources. Due to its inherent complexity, industrial-sized automated wet-etch station scheduling problems are rarely solved through full rigorous mathematical formulations. Decomposition techniques based on heuristic, meta-heuristics and simulation-based methods have been traditionally reported in literature to provide feasible solutions with reasonable CPU times. This work introduces an improvement MILP-based decomposition strategy that combines the benefits of a rigorous continuous-time MILP (mixed integer linear programming) formulation with the flexibility of heuristic procedures. The schedule generated provides enhanced solutions over time to challenging real-world automated wet etch station scheduling problems with moderate computational cost. This methodology was able to provide more than a 7% of improvement in comparison with the best results reported in literature for the most complex problem instances analyzed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hybrid Decomposition Approach  
dc.subject
Milp-Based Strategies  
dc.subject
Large-Scale Scheduling Problems  
dc.subject
Semiconductor Manufacturing System (Sms)  
dc.subject
Wafer Fabrication  
dc.subject
Modeling And Optimization  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An improvement-based MILP optimization approach to complex AWS scheduling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-21T18:39:44Z  
dc.journal.volume
47  
dc.journal.pagination
217-226  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina  
dc.description.fil
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Gutierrez, Gloria Maribel. Universidad de Valladolid; España  
dc.description.fil
Fil: de Prada, Cesar. Universidad de Valladolid; España  
dc.journal.title
Computers And Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135412002207  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2012.06.036