Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An improvement-based MILP optimization approach to complex AWS scheduling

Aguirre, Adrian MarceloIcon ; Mendez, Carlos AlbertoIcon ; Gutierrez, Gloria Maribel; de Prada, Cesar
Fecha de publicación: 12/2012
Editorial: Elsevier
Revista: Computers And Chemical Engineering
ISSN: 0098-1354
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

The automated wet-etch station (AWS) is one of the most critical stages of a modern semiconductor manufacturing system (SMS), which has to simultaneously deal with many complex constraints and limited resources. Due to its inherent complexity, industrial-sized automated wet-etch station scheduling problems are rarely solved through full rigorous mathematical formulations. Decomposition techniques based on heuristic, meta-heuristics and simulation-based methods have been traditionally reported in literature to provide feasible solutions with reasonable CPU times. This work introduces an improvement MILP-based decomposition strategy that combines the benefits of a rigorous continuous-time MILP (mixed integer linear programming) formulation with the flexibility of heuristic procedures. The schedule generated provides enhanced solutions over time to challenging real-world automated wet etch station scheduling problems with moderate computational cost. This methodology was able to provide more than a 7% of improvement in comparison with the best results reported in literature for the most complex problem instances analyzed.
Palabras clave: Hybrid Decomposition Approach , Milp-Based Strategies , Large-Scale Scheduling Problems , Semiconductor Manufacturing System (Sms) , Wafer Fabrication , Modeling And Optimization
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 12.80Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/18787
URL: http://www.sciencedirect.com/science/article/pii/S0098135412002207
DOI: http://dx.doi.org/10.1016/j.compchemeng.2012.06.036
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Aguirre, Adrian Marcelo; Mendez, Carlos Alberto; Gutierrez, Gloria Maribel; de Prada, Cesar; An improvement-based MILP optimization approach to complex AWS scheduling; Elsevier; Computers And Chemical Engineering; 47; 12-2012; 217-226
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES