Mostrar el registro sencillo del ítem
dc.contributor.author
Barrozo, María Fernanda
dc.contributor.author
Molter, Ursula Maria
dc.date.available
2017-06-23T19:12:27Z
dc.date.issued
2014-04
dc.identifier.citation
Barrozo, María Fernanda; Molter, Ursula Maria; Countable contraction mappings in metric spaces: Invariant Sets and Measures; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 593-602
dc.identifier.issn
1895-1074
dc.identifier.uri
http://hdl.handle.net/11336/18774
dc.description.abstract
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Versita
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Countable Iterated Function Systems
dc.subject
Invariant Measure
dc.subject
Atractor
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Countable contraction mappings in metric spaces: Invariant Sets and Measures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-23T14:12:35Z
dc.journal.volume
12
dc.journal.number
4
dc.journal.pagination
593-602
dc.journal.pais
Polonia
dc.journal.ciudad
Varsovia
dc.description.fil
Fil: Barrozo, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2478/s11533-013-0371-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2014.12.issue-4/s11533-013-0371-0/s11533-013-0371-0.xml
Archivos asociados