Mostrar el registro sencillo del ítem

dc.contributor.author
Barrozo, María Fernanda  
dc.contributor.author
Molter, Ursula Maria  
dc.date.available
2017-06-23T19:12:27Z  
dc.date.issued
2014-04  
dc.identifier.citation
Barrozo, María Fernanda; Molter, Ursula Maria; Countable contraction mappings in metric spaces: Invariant Sets and Measures; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 593-602  
dc.identifier.issn
1895-1074  
dc.identifier.uri
http://hdl.handle.net/11336/18774  
dc.description.abstract
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Versita  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Countable Iterated Function Systems  
dc.subject
Invariant Measure  
dc.subject
Atractor  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Countable contraction mappings in metric spaces: Invariant Sets and Measures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-23T14:12:35Z  
dc.journal.volume
12  
dc.journal.number
4  
dc.journal.pagination
593-602  
dc.journal.pais
Polonia  
dc.journal.ciudad
Varsovia  
dc.description.fil
Fil: Barrozo, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina  
dc.journal.title
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2478/s11533-013-0371-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2014.12.issue-4/s11533-013-0371-0/s11533-013-0371-0.xml