Artículo
Countable contraction mappings in metric spaces: Invariant Sets and Measures
Fecha de publicación:
04/2014
Editorial:
Versita
Revista:
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print)
ISSN:
1895-1074
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.
Palabras clave:
Countable Iterated Function Systems
,
Invariant Measure
,
Atractor
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barrozo, María Fernanda; Molter, Ursula Maria; Countable contraction mappings in metric spaces: Invariant Sets and Measures; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 593-602
Compartir
Altmétricas