Mostrar el registro sencillo del ítem

dc.contributor.author
Torres, Humberto Maximiliano  
dc.contributor.author
Gurlekian, Jorge Alberto  
dc.date.available
2017-06-23T18:32:08Z  
dc.date.issued
2016-01  
dc.identifier.citation
Torres, Humberto Maximiliano; Gurlekian, Jorge Alberto; Novel estimation method for the superpositional intonation model; IEEE Signal Procesing Society; IEEE/ACM Transactions on Audio, Speech, and Language Processing; 24; 1; 1-2016; 151-160  
dc.identifier.issn
2329-9290  
dc.identifier.uri
http://hdl.handle.net/11336/18756  
dc.description.abstract
Fujisaki’s intonation model parameterizes the F0’s contour efficiently and because of its strong physiological basis has been successfully tested in different languages. One problem that has not been fully addressed is the extraction of the model’s parameters, i.e., given a sentence, which model’s parameter values best describe its intonation. Most of the proposed methods strive to optimize the parameters so as to obtain the best fit for the F0 contour globally. In this paper we propose to use text information from the sentence as the main guide or reference for adjusting the parameters. We present a method that defines a set of rules to fix and optimize the model’s parameters. Optimization never loses sight of the text structure events that arouse it. When text information is not enough, the algorithm predicts parameters from F0 contour and tie them to the text. The process of parameter estimation can be seen as a way to go from text information to the F0 contour. Parameter optimization is carried out to fit the F0 contour locally. Our novel approach can be implemented manually or automatically. We present examples of manual implementation and the quantitative results of the automatic one. Tested on three corpora in Spanish, English and German, our automatic method shows a performance of 34% better than other tested methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE Signal Procesing Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Superpositional Intonational Model  
dc.subject
Fujisaki'S Intonational Model  
dc.subject
Model Estimation  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Novel estimation method for the superpositional intonation model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-21T17:40:31Z  
dc.identifier.eissn
2329-9304  
dc.journal.volume
24  
dc.journal.number
1  
dc.journal.pagination
151-160  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Torres, Humberto Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina  
dc.description.fil
Fil: Gurlekian, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina  
dc.journal.title
IEEE/ACM Transactions on Audio, Speech, and Language Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2015.2500728  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7328694/