Mostrar el registro sencillo del ítem
dc.contributor.author
Garí Núñez, Yisel
dc.contributor.author
Monge Bosdari, David Antonio
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.date.available
2023-02-09T19:04:37Z
dc.date.issued
2022-02
dc.identifier.citation
Garí Núñez, Yisel; Monge Bosdari, David Antonio; Mateos Diaz, Cristian Maximiliano; A Q-learning approach for the autoscaling of scientific workflows in the Cloud; Elsevier Science; Future Generation Computer Systems; 127; 2-2022; 168-180
dc.identifier.issn
0167-739X
dc.identifier.uri
http://hdl.handle.net/11336/187537
dc.description.abstract
Autoscaling strategies aim to exploit the elasticity, resource heterogeneity and varied prices options of a Cloud infrastructure to improve efficiency in the execution of resource-hungry applications such as scientific workflows. Scientific workflows represent a special type of Cloud application with task dependencies, high-performance computational requirements and fluctuating workloads. Hence, the amount and type of resources needed during workflow execution changes dynamically over time. The well-known autoscaling problem comprises (i) scaling decisions, for adjusting the computing capacity of a virtualized infrastructure to meet the current demand of the application and (ii) task scheduling decisions, for assigning tasks to specific acquired Cloud resources for execution. Both are highly complex sub-problems, even more because of the uncertainty inherent to the Cloud. Reinforcement Learning (RL) provides a solid framework for decision-making problems in stochastic environments. Therefore, RL offers a promising perspective for designing Cloud autoscaling strategies based on an online learning process. In this work, we propose a novel formulation for the problem of infrastructure scaling in the Cloud as a Markov Decision Process, and we use the Q-learning algorithm for learning scaling policies, while demonstrating that considering the specific characteristics of workflow applications when taking autoscaling decisions can lead to more efficient workflow executions. Thus, our RL-based scaling strategy exploits the information available about workflow dependency structures. Simulations performed on four well-known workflows demonstrate significant gains (25%–55%) of our proposal in comparison with a similar state-of-the-art proposal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOSCALING
dc.subject
CLOUD COMPUTING
dc.subject
REINFORCEMENT LEARNING
dc.subject
WORKFLOW
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Q-learning approach for the autoscaling of scientific workflows in the Cloud
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-02-09T15:14:35Z
dc.journal.volume
127
dc.journal.pagination
168-180
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Garí Núñez, Yisel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
dc.description.fil
Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Future Generation Computer Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167739X21003538
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.future.2021.09.007
Archivos asociados