Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Q-learning approach for the autoscaling of scientific workflows in the Cloud

Garí Núñez, YiselIcon ; Monge Bosdari, David AntonioIcon ; Mateos Diaz, Cristian MaximilianoIcon
Fecha de publicación: 02/2022
Editorial: Elsevier Science
Revista: Future Generation Computer Systems
ISSN: 0167-739X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Autoscaling strategies aim to exploit the elasticity, resource heterogeneity and varied prices options of a Cloud infrastructure to improve efficiency in the execution of resource-hungry applications such as scientific workflows. Scientific workflows represent a special type of Cloud application with task dependencies, high-performance computational requirements and fluctuating workloads. Hence, the amount and type of resources needed during workflow execution changes dynamically over time. The well-known autoscaling problem comprises (i) scaling decisions, for adjusting the computing capacity of a virtualized infrastructure to meet the current demand of the application and (ii) task scheduling decisions, for assigning tasks to specific acquired Cloud resources for execution. Both are highly complex sub-problems, even more because of the uncertainty inherent to the Cloud. Reinforcement Learning (RL) provides a solid framework for decision-making problems in stochastic environments. Therefore, RL offers a promising perspective for designing Cloud autoscaling strategies based on an online learning process. In this work, we propose a novel formulation for the problem of infrastructure scaling in the Cloud as a Markov Decision Process, and we use the Q-learning algorithm for learning scaling policies, while demonstrating that considering the specific characteristics of workflow applications when taking autoscaling decisions can lead to more efficient workflow executions. Thus, our RL-based scaling strategy exploits the information available about workflow dependency structures. Simulations performed on four well-known workflows demonstrate significant gains (25%–55%) of our proposal in comparison with a similar state-of-the-art proposal.
Palabras clave: AUTOSCALING , CLOUD COMPUTING , REINFORCEMENT LEARNING , WORKFLOW
Ver el registro completo
 
Archivos asociados
Tamaño: 1.762Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/187537
URL: https://www.sciencedirect.com/science/article/pii/S0167739X21003538
DOI: http://dx.doi.org/10.1016/j.future.2021.09.007
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Garí Núñez, Yisel; Monge Bosdari, David Antonio; Mateos Diaz, Cristian Maximiliano; A Q-learning approach for the autoscaling of scientific workflows in the Cloud; Elsevier Science; Future Generation Computer Systems; 127; 2-2022; 168-180
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES